1. CAESAR-II Load Case Combination Study

¹è°ü ÀÀ·ÂÇؼ®Àº ÁÖ·Î Weight Load¿¡ ´ëÇÑ ÀÀ·Â, Operation ModeÀÇ ¿­ÀÀ·Â, Wind Load¿Í Seismic Load¿¡ ´ëÇÑ ÀÀ·Â Çؼ®À¸·Î ³ª´­ ¼ö Àִµ¥, ¿©±â¿¡¼­ ´Ù·ç°íÀÚ ÇÏ´Â ÁÖ¾ÈÁ¡Àº Seismic Load¿¡ °üÇÑ °ÍÀÔ´Ï´Ù.

ÁöÁø(Earthquake)Àº º¸Åë ¿¹°í ¾øÀÌ ¹ß»ýÇÔÀ¸·Î, PlantÀÇ ¹è°üÀº Operation »óÅ¿¡¼­ Seismic Load¸¦ ´õ ¹Þ°Ô µË´Ï´Ù. Áï, Thermal Load¿¡ ´õÇÏ¿© Seismic Load¸¦ ¹Þ°ÔµË´Ï´Ù. µû¶ó¼­ ¹è°ü ÀÀ·ÂÇؼ® Engineer´Â ÀÌ Seismic Load¸¦ ±¸Çϱâ À§ÇÏ¿© ÀϹÝÀûÀ¸·Î, ¾Æ·¡¿Í º¸ÀÎ ¹Ù¿Í °°ÀÌ, Operation Load¸¦ ±âÁØÇÏ¿© ¼ø¼öÇÑ Seismic Load¸¦ ±¸ÇÕ´Ï´Ù.

LO+S = LOpe + LSeis . . . . . (1)
Net Seismic Load = LO+S - LOpe

±×·¯³ª ÀÌ¿Í °°Àº Seismic Load¸¦ ±¸ÇÏ´Â ÀÌ ¹æ¹ý¿¡´Â »ó´çÇÑ ¹®Á¦Á¡ÀÌ ÀÖ½À´Ï´Ù. ¸¸¾à ¹è°ü System¿¡ Snubber°¡ »ç¿ëµÇ¾úÀ» °æ¿ì, SnubberÀÇ ±¸¼ÓÀ» Active ÇÏ¸é ¹è°üÀÇ Thermal Expansion Load¸¦ ±¸¼ÓÇÏ°Ô µÇ°í, Snubber¸¦ Inactive Çϸé Seismic Load¸¦ ÀâÀ» ¼ö ¾ø°Ô µÇ¹Ç·Î, °á±¹ Snubber Support¸¦ »ç¿ëÇÒ ¼ö°¡ ¾ø°Ô µË´Ï´Ù. ±×·¡¼­ ÀϹÝÀûÀÎ Æí¹ýÀ¸·Î¼­ ½º³Ê¹ö ¼­Æ÷Æ® ÁöÁ¡ÀÇ Thermal Movement¸¦ ±¸ÇÑ ´ÙÀ½, ½º³Ê¹ö¸¦ CNode·Î ±¸¼ÓÇÏ°í, ÀÌ ±¸¼Ó (CNode) ÁöÁ¡¿¡ Displcement ÅÇÀ» È°¼ºÈ­ ÇÏ¿© Thermal Movement ÀÔ·ÂÇÏ´Â ¹æ¹ýÀ» »ç¿ëÇÕ´Ï´Ù.

¶Ç´Ù¸¥ ¾Æ·¡¿Í °°Àº ¹æ¹ýÀ¸·Î ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ºñ·Ï ÁöÁøÀÌ Operation »óÅ¿¡¼­ ¹ß»ýÇßÀ» Áö¶óµµ, ¾Æ·¡¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ Sustained Load¸¦ ±âÁØÇÏ¿© Seismic Load¸¦ ±¸ÇÏ´Â ¹æ¹ýµµ ÀÖ½À´Ï´Ù. Sus.Load¸¦ ±âÁØÇÑ Seismic Load¸¦ Operation Load¿Í ´õÇÏ¸é °á°ú´Â À§¿¡¼­ ¾ð±ÞÇÑ Ope-Base¿¡¼­ÀÇ (À§ÀÇ ½Ä (1)¿¡ ÀÇÇÑ) ¸ðµç Load °ª°ú ¿ÏÀüÈ÷ °°Àº °ªÀÌ µË´Ï´Ù. ÀÌ·¸°Ô Seismic Load¸¦ Sus-Base·Î ±¸Çϸé Snubber¸¦ Active ÇÒ ¼ö ÀÖ½À´Ï´Ù.

LS+S = LSus + LSeis
Net Seismic Load = LS+S - LSus

¾Æ·¡¿¡ º¸ÀÎ TableÀº Sustained Load¸¦ ±âÁØÇÏ¿© ±¸ÇÑ °ªÀÌ Operation Load¸¦ ±âÁØÇÏ¿© ±¸ÇÑ °ª°ú ¶È °°À½À» ±¸Ã¼ÀûÀ¸·Î º¸À̱â À§ÇÑ Load Cases ºñ±³Ç¥ÀÔ´Ï´Ù. ÀÌ Table¿¡¼­´Â Seismic Load¸¦ XÃà ¼ººÐ°ú ZÃà ¼ººÐÀ» SRSS·Î ´õÇÏÁö ¾Ê°í Window Loadó·³ ±×´ë·Î »ç¿ëÇÏ´Â °ÍÀ¸·Î µÇ¾î Àִµ¥, ÀÌ´Â Sus-Base·Î ±¸ÇÑ °¢°¢ÀÇ Load °ªÀÌ Ope-Base·Î ±¸ÇÑ °¢°¢ÀÇ Load °ª°ú ¶È °°À½À» º¸À̱â À§ÇÑ, (½ÇÁ¦·Î´Â »ç¿ëµÇÁö ¾Ê´Â) °¡»ó Load CasesÀÔ´Ï´Ù. ½ÇÁ¦·Î´Â IBC ¶Ç´Â KBC¿¡ µû¶ó Net Seismic LoadsÀÇ XÃà ¼ººÐ°ú ZÃà ¼ººÐÀ» SRSS·Î ´õÇÏ¿© Support Load·Î »ç¿ëÇØ¾ß ÇÕ´Ï´Ù. ³»°¡ ½ÇÁ¦·Î »ç¿ëÇÑ Seismic Load Cases´Â ¾Æ·¡¿¡¼­ ±¸Ã¼ÀûÀ¸·Î ´Ù½Ã ¼³¸íµÇ¾îÁú °ÍÀÔ´Ï´Ù.

CAESAR-II Load Case Combination Table
Ope-Base Load Cases Sus-Base Load Cases
L1=WW+HP HYD Algebr L1=WW+HP HYD Algebr
L2=W+T1+P1 OPE Algebr Norm.Ope. L2=W+T1+P1 OPE Algebr Normal Ope.
L3=W+T2+P1 OPE Algebr L3=W+T2+P1 OPE Algebr
Wind Support Load L4=W+P1+WIN1 OCC Algebr Wind Load
L4=W+T1+P1+WIN1 OCC Algebr Wind
Load
L5=W+P1+WIN2 OCC Algebr
L5=W+T1+P1-WIN1 OCC Algebr L6=W+P1+U1 OCC Algebr Seismic Load
L6=W+T1+P1+WIN2 OCC Algebr L7=W+P1+U2 OCC Algebr
L7=W+T1+P1-WIN2 OCC Algebr L8=W+P1 SUS Algebr Sustained Load
Seismic Support Load L9=L4-L8 OCC Algebr +X Dir Net Wind Load
L8=W+T1+P1+U1 OCC Algebr Seismic Load L10=L5-L8 OCC Algebr +Z Dir
L9=W+T1+P1-U1 OCC Algebr L11=L6-L8 OCC Algebr +X Dir Net Seismc Load
L10=W+T1+P1+U2 OCC Algebr L12=L7-L8 OCC Algebr +Z Dir
L11=W+T1+P1-U2 OCC Algebr Wind Support Load
L12=W+P1 SUS Algebr Sus.Load L13=L2+L9 OCC Algebr +X Dir Ope.±âÁØ
Wind Load¿Í
°°Àº °ª
Net Wind Load L14=L2-L9 OCC Algebr -X Dir
L13=L4-L2 OCC Algebr Net Wind Load L15=L2+L10 OCC Algebr +Z Dir
L14=L5-L2 OCC Algebr L16=L2-L10 OCC Algebr -Z Dir
L15=L6-L2 OCC Algebr Seismic Support Load
L16=L7-L2 OCC Algebr L17=L2+L11 OCC Algebr +X Dir Ope.±âÁØ
Seismic
Load¿Í
°°Àº °ª
Net Seismic Load L18=L2-L11 OCC Algebr -X Dir
L17=L8-L2 OCC Algebr Net Seismic Load L19=L2+L12 OCC Algebr +Z Dir
L18=L9-L2 OCC Algebr L20=L2-L12 OCC Algebr -Z Dir
L19=L10-L2 OCC Algebr Thermal Load Stress
L20=L11-L2 OCC Algebr L21=L2-L8 EXP Algebr Thermal Stress
Thermal Load Stress L22=L3-L8 EXP Algebr
L21=L2-L12 EXP Algebr Thermal Stress Wind Load Stress
L22=L3-L12 EXP Algebr L23=L8+L9 OCC Scalar +X Dir Wind Load
Stress
(ÁÂÃø°ú °°À½)
Wind Load Stress L24=-L9(NoRept) OCC Algebr -X Dir
L25=L8+L24 Scalar
L23=L12+L13 OCC Scalar Wind
Load
Stress
L26=L8+L10 OCC Scalar +Z Dir
L24=L12+L14 OCC Scalar L27=-L10(NoRept) OCC Algebr -Z Dir
L25=L12+L15 OCC Scalar L28=L8+L27 Scalar
L26=L12+L16 OCC Scalar Seismic Load Stress
Seismic Load Stress L29=L8+L11 OCC Scalar +X Dir Seismc Load
Stress
(ÁÂÃø°ú °°À½)
L30=-L11(NoRept) OCC Algebr -X Dir
L27=L12+L17 OCC Scalar Seismic Load Stress L31=L8+L30 Scalar
L28=L12+L18 OCC Scalar L32=L8+L12 OCC Scalar +Z Dir
L29=L12+L19 OCC Scalar L33=-L12(NoRept) OCC Algebr -Z Dir
L30=L12+L120 OCC Scalar L34=L2+L33 Scalar


³ª´Â ÀþÀº ½ÃÀý, PlantÀÇ ¹è°ü¿¡ °¡ÇØÁö´Â Seismic Load¸¦ Operation Mode¿¡¼­ ±¸ÇØ¾ß ¸Â´Â °ÍÀ¸·Î »ý°¢Çß¾ú½À´Ï´Ù. ±×·¯³ª À§¿¡¼­ StudyÇÑ ¹Ù¿Í °°ÀÌ Seismic Load¸¦ Sustained Load¸¦ ±âÁØÇؼ­ ±¸Çصµ Operation Load¸¦ ±âÁØÇÏ¿© ±¸ÇÑ ¸ðµç °ª°ú ¿ÏÀüÈ÷ °°À½À» È®ÀÎÇß½À´Ï´Ù. ÇÑÆí, IBC, UBC, ASCE 7 ¶Ç´Â KBC¿¡¼­´Â ¾Æ·¡¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ Net Seismic Load¸¦ 1.3¹è Å°¿ì°Å³ª X-Ãà°ú Z-ÃàÀÇ ¼ººÐÀ» SRSS·Î ÇÕ¼ºÇϵµ·Ï ±ÔÁ¤ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ ±ÔÁ¤¿¡ µû¶ó, ³»°¡ °ú°Å¿¡ ´ë¸² ¿£Áö´Ï¾î¸µ Stress TeamÀÇ ÀÚ¹®À» ¹Þ¾Æ ÀÛ¼º, ±º»ê º¹ÇÕ ¹ßÀü¼Ò ¹è°ü ÀÀ·ÂÇؼ®¿¡ »ç¿ëÇß´ø (Seismic°ú °ü·ÃÇÑ) Load Cases¸¦ Iso Dwg°ú ´õºÒ¾î ¾Æ·¡¿¡ ¼³¸íÇØ µÎ¾ú½À´Ï´Ù.

International Building Code(2003)ÀÇ Seismic Load ÇÕ¼º:
1620.3.2 Direction of seismic load
. . . »ý·« . . .
One hundred percent of the forces for one direction plus 30 percent of the forces for the perpendicular direction. The combination requiring the maximum component strength shall be used. Alternatively, the effects of the two orthogonal directions are permitted to be combined on a square root of the sum of the squares (SRSS) basis. When the SRSS method of combining directional effects is used, each term computed shall be assigned the sign that will result in the most conservative result.
. . . »ý·« . . .
1616.5.1(2). An example of the required seismic load cases is as follows:
Seismic Load
Case 1
100% East-West Seismic Force Effect +
30% North-South Seismic Force Effect
Seismic Load
Case 2
30% East-West Seismic Force Effect +
100% North-South Seismic Force Effect
Alternatively, a method called the "square root of the sum of the squares" can be used where the force effects in the two orthogonal directions are squared, added and then the square root of the sum is taken.

Uniform Building Code(1997)ÀÇ Seismic Load ÇÕ¼º:
SECTION 1633 - DETAILED SYSTEMS DESIGN REQUIREMENTS
1633.1 General. All structural framing systems shall comply with the requirements of Section 1629.
. . . »ý·« . . .
The requirement that orthogonal effects be considered may be satisfied by designing such e1ements for 100 percent of the prescribed design seismic forces in one direction plus 30 percent of the prescribed design seismic forces in the perpendicular direction. The combination requiring the greater component strength shall be used for design. Alternatively, the effects of the two Orthogonal directions may be combined on a square root of the sum of the squares (SRSS) basis. When the SRSS method of combining directional effects is used, each term computed shall be assigned the sign that will result in the most conservative result.

Âü°í»çÇ×:
¹Ì±¹¿¬¹æ°ÇÃ๰ ³»ÁøÄÚµåÀÎ UBC(Uniform Building Code)´Â ICC¿¡¼­ ¹ßÇàÇÑ IBC¿¡ Æ÷ÇԵǾú°í, ÀÌ UBC´Â ´õ ÀÌ»ó ¹ßÇàµÇÁö ¾Ê°Ô µÇ¾ú½À´Ï´Ù. IBC´Â 2000¿¡ ÃÊÆÇ, 2003³â°ú 2006³â¿¡ °³Á¤ÆÇÀÌ ¹ßÇàµÇ¾ú´Âµ¥, 2003³âÆÇ¿¡¼­ ±ÔÁ¤ÇÑ À§ÀÇ Seismic LoadÀÇ ÇÕ¼º¿¡ ´ëÇÑ ºÎºÐÀº 2006³â °³Á¤ÆÇ¿¡¼­ ´Ù·çÁö ¾Ê´Â °ÍÀ¸·Î º¸¾Æ ±× ³»¿ë¿¡ º¯ÇÔÀÌ ¾ø¾î º¸ÀÔ´Ï´Ù.

¹Ì Åä¸ñÇÐȸ(ASCE 7-95)ÀÇ Seismic Load ÇÕ¼º:
12.5 DIRECTION OF LOADING
12.5.3 Seismic Design Category C. Loading applied to structures assigned to Seismic Design Category C shall, as a minimum, conform to the requirements of Section 12.5.2 for Seismic Design Category B and the requirements of this section. Structures that have horizontal structural irregularity Type 5 in Table 12.3-1 shall use one of the following procedures:

a. Orthogonal Combination Procedure. The structure shall be analyzed using the equivalent lateral force analysis procedure of Section 12.8, the modal response spectrum analysis procedure of Section 12.9, or the linear response history procedure of Section 16.1, as permitted under Section 12.6, with the loading applied independently in any two orthogonal directions and the most critical load effect due to direction of application of seismic forces on the structure is permitted to be assumed to be satisfied if components and their foundations are designed for the following combination of prescribed loads: 100 percent of the forces for one direction plus 30 percent of the forces for the perpendicular direction; the c ombination requiring the maximum component strength shall be used.

b. Simultaneous Application of Orthogonal Ground Motion. The structure shall be analyzed using the linear response history procedure of Section 16.1 or the nonlinear response history procedure of Section 16.2, as permitted by Section 12.6, with orthogonal pairs of ground motion acceleration histories applied simultaneously.
¿©±â¿¡¼­ Simultaneous ApplicationÀÌ ÀǹÌÇÏ´Â °ÍÀº X-Ãà°ú Z-ÃàÀÇ Seismic Load¸¦ SRSS·Î °áÇÕÇØ¾ß ÇÔÀ» ¶æÇÕ´Ï´Ù.

Korea Building Code(2005)ÀÇ Seismic Load ÇÕ¼º:
0306.8.4 ÁöÁøÇÏÁßÀÇ ¹æÇâ
. . . »ý·« . . .
0306.8.4.1ÀÇ ±ÔÁ¤À» ¸¸Á·ÇÏ¿©¾ß Çϸç, ƯÈ÷ <Ç¥ 0306.4.4>¿¡ ±ÔÁ¤µÈ Æò¸éºñÁ¤Çü À¯Çü 5¿¡ ÇØ´çÇÏ´Â ±¸Á¶¹°ÀÇ ¼³°èºÎÀç·ÂÀº ´ÙÀ½ÀÇ µÎ °¡Áö ¹æ¹ý Áß ÇÑ °¡Áö ¹æ¹ýÀ» ÀÌ¿ëÇÏ¿© °áÁ¤ÇÑ´Ù.

(1) ÇÑ ¹æÇâ ÁöÁøÇÏÁß 100%¿Í Á÷°¢¹æÇâ ÇÏÁßÀÇ 30%¿¡ ´ëÇÑ ÇÏÁß È¿°úÀÇ Àý´ë°ªÀ» ÇÕÇÏ¿© ±¸ÇϵÇ, µÎ Á¶ÇÕ Áß Å« °ªÀ» ÅÃÇÑ´Ù.
(2) Á÷±³ÇÏ´Â µÎ ¹æÇâ ÇÏÁß È¿°úÀÇ 100%¸¦ Á¦°öÇÕÁ¦°ö±Ù(SRSS) ¹æ¹ýÀ¸·Î Á¶ÇÕÇÑ´Ù.


1.1 ±º»ê º¹ÇÕ½ÎÀÌŬ ¹ßÀü¼Ò Seismic Load

CAESAR-II Load Case Combination

À§¿¡ º¸ÀÎ Iso DwgÀº, ³»°¡ °ú°Å µÎ¿øÇ÷£Æ® ¿£Áö´Ï¾î¸µ¿¡ ±Ù¹«ÇÒ ¶§ ÀÀ·Â Çؼ®À» ¼öÇàÇß´ø °ÍÀ¸·Î, ±º»ê Combined Cycle Power Plant(700MW)ÀÇ Steam Turbine¿¡ ¿¬°áµÇ´Â HP Steam LineÀ» º¸ÀÎ °ÍÀÔ´Ï´Ù. Operation ¿Âµµ´Â 564¡É·Î ¾ÆÁÖ ³ôÀº ÆíÀÌ°í, Steam TurbineÀ¸·Î °¡´Â Steam ·®À» Á¦¾îÇϱâ À§ÇÑ 2°³ÀÇ Valve Áß·®Àº °¢°¢ 19ton¿¡ ´ÞÇϸç, ¿©±â¿¡ Seismic Gravity Factor´Â 0.314·Î ¾ÆÁÖ ³ôÀº ÆíÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¾ÇÁ¶°Ç¿¡¼­ Piping System¿¡ Snubber Support¸¦ »ç¿ëÇÏÁö ¾Ê°í ¹è°ü ÀÀ·ÂÀÌ Çã¿ëÀÀ·Â ÀÌÇÏ°¡ µÇµµ·Ï ÇÏ°í, ¶Ç Nozzle Load °ªÀÌ Allowable Load °ª ÀÌÇÏ·Î µÇµµ·Ï ÇÏ´Â °ÍÀº °ÅÀÇ ºÒ°¡´ÉÇÕ´Ï´Ù.

µû¶ó¼­ Iso Dwg¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ Snubber Support¸¦ »ç¿ëÇؾ߸¸ Çß¾ú½À´Ï´Ù. ÀÌ¿Í °°ÀÌ Snubber¸¦ »ç¿ëÇÒ °æ¿ì¿¡´Â Net Seismic Load¸¦ ÁÂÃø Load Case Combination Table¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ Seismic Load¸¦ Sustained Load¸¦ ±âÁØÇÏ¿© ±¸ÇØ¾ß ÇÕ´Ï´Ù. ´ÙÀ½ ÁöÁø¿¡ ´ëÇÑ Support Load¸¦ ¾ò±â À§Çؼ­´Â Net Seismic LoadÀÇ XÃà ¼ººÐ°ú ZÃà ¼ººÐÀ» SRSS·Î ÇÕÇØ¾ß ÇÕ´Ï´Ù.

Project: ±º»ê º¹ÇÕ½ÎÀÌŬ ¹ßÀü¼Ò yGinEngrs 2007.12.27
Load Cases R e m a r k s
L1=W HGR - Spring Support
Load¸¦ ±¸ÇÏ´Â ¼ö½Ä
L2=W+D1+T1+P1 HGR -
L3=WW+HP+H HYD Algebr Load
L4=W+P1+H SUS Algebr Sustained Load
L5=W+D1+T1+P1+H OPE Algebr Steam TurbineÀÇ ¿îÀü ¸ðµå´Â »ó´çÈ÷ ´Ù¾çÇÏ´Ù.
L6=W+D2+T2+P1+H OPE Algebr
L7=W+D3+T3+P1+H OPE Algebr
L8=W+D4+T4+P1+H OPE Algebr
L9=W+D5+T5+P1+H OPE Algebr
L10=W+D6+T6+P1+H OPE Algebr
L11=W+P1+H+U1 OCC Algebr Sustained Load
L12=W+P1+H+U2 OCC Algebr
L13=L11-L4 OCC Algebr Net Seismic Load
L14=L12-L4 OCC Algebr
L15=L13+L14 OCC SRSS XÃà°ú ZÃà Load¸¦
ÇÕ¼ºÇÑ´Ù.
L16=L5+L15 OCC Algebr ¿îÀü ModeÀÇ
Seismic Load
L17=L5-L15 OCC Algebr
L18=L5-L4 EXP Algebr Thermal Load Stress
L19=L4+L15 OCC Scalar Seismic Load Stress

SRSS·Î ÇÕ(Sum)ÇÑ Net Seismic Load¸¦ ÁÖ Operation ModeÀÇ Load¿Í ÇÕÇÏ¸é ¿îÀü »óÅ¿¡¼­ ¹ß»ýÇÑ (ÁöÁøÀÇ) Seismic Support Load°¡ µË´Ï´Ù. ¶ÇÇÑ ÀÌ Seismic Load´Â -X°ú -ZÃàÀÇ ¹æÇâÀ¸·Îµµ ¹ß»ýÇÒ ¼ö ÀÖÀ½À¸·Î Ope.Load(L5)¿¡ Net Seismic Load(L15)¸¦ »©ÁÖ´Â °Í(L17=L5-L15)µµ ÀØÁö ¾Ê¾Æ¾ß ÇÕ´Ï´Ù.

Seismic Load¿¡ ´ëÇÑ Stress °ªÀº, ¿ìÃø¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ, SRSS·Î ÇÕÇÑ Net Seismic Load(L15)¸¦ Sustained Load(L4)¿Í Scalar·Î ÇÕ(Sum)ÇØ¾ß ÇÕ´Ï´Ù. Load Case¸¦ Summation ÇÒ ¶§ Default·Î AlgebraicÀÌ °ø±ÞµÊÀ¸·Î ÁÖÀÇÇØ¾ß ÇÕ´Ï´Ù. ³ªµµ ´ç½Ã À̸¦ AlgebraicÀ¸·Î ÇÕÇÏ´Â ½Ç¼ö¸¦ ¹üÇß¾ú½À´Ï´Ù. -³¡- 2010. 08.15. ¾ç±â¿Í



2. Two-Guide One-Stop SupportÀÇ È°¿ë

°í¿ÂÀÇ ¹è°üÀÌ Pipe RackÀ» Åë°úÇÒ °æ¿ì, ÁÂÃø ±×¸²¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ, ¿­ÆØâ ·®ÀÌ Èí¼öµÇµµ·Ï ¹è°ü Route¸¦ Loop ¸ð¾çÀ¸·Î ¸¸µé°í, Two-Guide One-Stop ¶Ç´Â One-Guide 3-Way Directional Stop Support¸¦ »ç¿ëÇÑ´Ù. ÀÌ¿Í °°ÀÌ ¹è°ü LoopÀÇ ÀüÈĸ¦ Two-Guide One-StopÀ¸·Î ±¸¼ÓÇÏ¸é ¹è°üÀÇ Loop¿¡¼­ ¿­ÆØâÀ¸·Î ÀÎÇÏ¿© ¹ß»ýÇÑ Forces¿Í Moments´Â ¸ðµÎ Â÷´ÜµÈ´Ù. Á» ´õ ¾ö¹ÐÈ÷ ¸»Çϸé, Two-Guide One-Stop¸¦ µÎ¸é (À§ ±×¸²¿¡¼­ Mz¿¡ ÇØ´çÇÏ´Â) ¹è°üÀÇ ÁøÇà¹æÇâ¿¡ ´ëÇÑ (Torsional) Moment¸¦ Á¦¿ÜÇÑ ¸ðµç ¹æÇâÀÇ Forces¿Í Moments°¡ Â÷´ÜµÈ´Ù. Â÷´ÜµÇÁö ¾Ê°í Two-Guide One-StopÀ» Åë°úÇÑ Torsional Moment´Â ¹è°üÀÌ ÁøÇà¹æÇâÀ» ¹Ù²Ù´Â (²ªÀÌ´Â) ºÎÀ§¿¡¼­ ¼Ò¸êµÈ´Ù.

µû¶ó¼­ Two-Guide One-StopÀº ¹è°üÀÇ ¼³°è±¸¿ªÀÌ ´Ù¸¥ (Battery Limit) °æ°èÁöÁ¡ÀÇ Support·Î »ç¿ëµÇ±âµµ ÇÏ°í, ¶Ç Stress Iso DwgÀÌ 10Àå ÀÌ»óÀ¸·Î ¸¹Àº ¹è°ü RoutineÀ» Analysis ÇÒ °æ¿ì, ¼Ò ±Ô¸ðÀÇ (Problem) Run-Package·Î ºÐ¸®Çϱâ À§Çؼ­ Á¾Á¾ »ç¿ëµÈ´Ù. Node No°¡ 1000À» ³Ñ±æ Á¤µµ·Î ±× ±Ô¸ð°¡ Å« ¹è°ü SystemÀº ÀûÀýÇÑ À§Ä¡¿¡ Two-Guide One-StopÀ» µÎ¾î ¼ÒÇüÀ¸·Î ºÐ¸®ÇÏ°í ÀÀ·ÂÇؼ®À» ¼öÇàÇÏ´Â °ÍÀÌ ÁÁ´Ù.





3. Air Fin CoolerÀÇ Tube Header Modeling

Air-Cooled Heat Exchanger´Â ÄɹÌÄà Ç÷£Æ®¿¡¼­ ¾ÆÁÖ ¸¹ÀÌ »ç¿ëµÈ´Ù. ÀÌ ExchangerÀÇ Allowable Nozzle Loads´Â API STD 661¿¡ ±ÔÁ¤µÇ¾î Àִµ¥, ±× °ªÀÌ ¸Å¿ì ÀÛ¾Æ À̸¦ ¸¸Á·ÇÏ´Â °ÍÀÌ ½±Áö ¾Ê´Ù. ¾Æ·¡ÀÇ ±ÛÀº Áß±Þ ÀÌÇÏ ¸ðµç Stress Engineer¿¡°Ô µµ¿òÀ» ÁÖ°íÀÚ, ³» ÈĹèÀ̱⵵ ÇÏ°í ¶Ç Ä£±¸À̱⵵ ÇÑ (20³â Àü, ´ë¸²¿£Áö´Ï¾î¸µ Stress Engineer·Î¼­ ³ª¿¡°Ô Stress ÀÌ·ÐÀ» ÁÖÁö½ÃÅ°±âµµ Çß´ø) ±èx´ö¾¾ÀÇ ÀÚ¹®À» ¹Þ¾Æ ÀÛ¼ºÇÑ °ÍÀÌ´Ù.

Air Fin Cooler´Â ´ëü·Î ¾Æ·¡¿¡ º¸ÀÎ ¹Ù¿Í °°Àº Çü»óÀ» ÇÏ°í Àִµ¥, º¸Åë À§ÂÊ Nozzle·Î ³Ã°¢ÇÒ À¯Ã¼(Water)°¡ ÀÔ·ÂµÇ°í ¾Æ·¡ÂÊÀ¸·Î ³Ã°¢µÈ À¯Ã¼°¡ ºüÁ® ³ª°¡µµ·Ï µÇ¾î ÀÖ´Ù. µû¶ó¼­ Tube HeaderÀÇ ¿Âµµ´Â À¯ÀÔ/À¯Ãâ À¯Ã¼¿ÂµµÀÇ Áß°£ °ªÀ» ÃëÇÑ´Ù. ÀÌ·¯ÇÑ Air Fin Cooler´Â º¸Åë (3,4) ¼­³Ê °³°¡ Pipe Rack ¸Ç À§¿¡ ¼³Ä¡µÇ°í, À̵é Air Fin CoolerÀÇ °¢ NozzleÀº ¹è°üÀ¸·Î ¸ðµÎ Header¿¡ ¿¬°áµÈ´Ù.

°íÀüÀûÀÎ ¹æ¹ýÀ¸·Î´Â °¢ Air Fin CoolerÀÇ ÁßÁ¡(170)À» (ANC) Fixed Pt·Î ¼³Á¤ÇÏ°í ModelingÇÑ´Ù. ÀÌ °æ¿ì, Air Fin Cooler°¡ 3°³ ÀÌ»óÀ¸·Î ¸¹°í, ¶Ç °¢ Nozzle°ú Header¸¦ ¿¬°áÇÏ´Â ¹è°ü¿¡ À¯¿¬¼º(Flexibility)ÀÌ ºÎÁ·Çϸé, ¸Ç ¿ìÃø Air Fin CoolerÀÇ ¿ìÃø Nozzle°ú ¸Ç ÁÂÃøÀÇ Air Fin CoolerÀÇ ÁÂÃø Nozzle¿¡´Â »ó´çÇÑ Load°¡ °É¸®°Ô µÇ¾î API-661¿¡ ±ÔÁ¤ÇÑ Nozzle Load¸¦ ¸ÂÃß´Â °ÍÀÌ Èûµé¾î Áø´Ù.

ÇÑÆí, API STD 661¿¡´Â ¾Æ·¡¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ Tube Bundle(Bay)ÀÌ À̵¿(Movement)ÇÒ ¼ö ÀÖµµ·Ï µÇ¾î¾ß ÇÏ´Â °ÍÀÌ ¸í½ÃµÇ¾î ÀÖ´Ù.

7.1 Tube bundle design
. . . »ý·« . . .
7.1.1.2 The vendor shall make provision for lateral movement of exchanger tube bundles of at least 6mm(1/4inch) in both directions or at least 12mm(1/2inch) in only one direction, unless the purchaser and the vendor agree on a greater movement.

ÀÌ ±ÔÁ¤¿¡ µû¶ó Air Fin Cooler°¡ ¾ó¸¶°£ À̵¿ÇÒ ¼ö ÀÖµµ·Ï Air Fin CoolerÀÇ Tube Header¸¦ Modeling ÇÏ¸é ¸Ç ¿ìÃø°ú ¸Ç ÁÂÃøÀÇ Nozzle¿¡ Å« Load°¡ °É¸®´Â °ÍÀ» ÇÇÇÒ ¼ö ÀÖ´Ù. ¾Æ·¡´Â API-661ÀÇ ±ÔÁ¤, ¾çÂÊ 6mm (ÇÑÂÊ12mm) MovementÀ» °í·ÁÇÏ¿© Tube Header¸¦ Modeling ÇÑ ¿¹¸¦ º¸ÀÎ °ÍÀÌ´Ù.



À§ ±×¸²¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ, Tube HeaderÀÇ ÁßÁ¡(170)À» CNode ANC·Î Àâ°í, CNode Á¡(171)À» À§ ±×¸²¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ Displacements·Î ±¸¼ÓÇÑ´Ù. º¸Åë NozzleÀÇ ±¸¼Ó ¼ö´ÜÀ¸·Î »ç¿ëµÇ´Â DisplacementsÀÇ ±¸¼Ó¿¡¼­´Â ºóÄ­À¸·Î µÎ¸é ±¸¼ÓµÇÁö ¾Ê´Â »óÅ·Π¼³Á¤µÈ´Ù. ÀÌ ±â´ÉÀ» ÀÌ¿ëÇÏ¿© Z-Ãà ¹æÇâÀº ÀÚÀ¯·Î¿î »óÅ·Π¼³Á¤ÇÏ°í ´ÙÀ½, ¸Ç ¿ìÃø Nozzle°ú ¸Ç ÁÂÃø Nozzle¿¡ ¿¬°áµÇ´Â (Rigid) HeaderÀÇ Node Pt¸¦ °¢°¢ +ZÃà ¹æÇâ°ú -Z ¹æÇâ¿¡ ´ëÇÏ¿© 6mm(¶Ç´Â 12mm) GapÀ» ÁÖ°í ±¸¼ÓÇÑ´Ù.

Air Fin Cooler¿¡ À¯ÀԵǴ ÀÛ¾÷À¯Ã¼ÀÇ ¿Âµµ´Â ±×·¸°Ô ³ôÁö´Â ¾ÊÀ¸³ª ´Ù¼öÀÇ Air Fin Cooler°¡ ÇϳªÀÇ Header¿¡ ¿¬°áµÇ°í, Air Fin CoolerÀÇ (À§ ±×¸²¿¡¼­ Z-Ãà¿¡ ÇØ´çÇÏ´Â) ÃÑ ±æÀÌ°¡ 20m¸¦ ³ÑÀ¸¸é, NozzleÀÌ ¿¬°áµÇ´Â HeaderÀÇ ¿­ÆØâ ·®ÀÌ (ÇÑÂÊÀ¸·Î) 12mm ÀÌ»óÀ¸·Î µÉ ¼öµµ ÀÖ´Ù. ÀÌ·¯ÇÑ °æ¿ì¿¡´Â ¸Ç ³¡ ÂÊ¿¡ À§Ä¡ÇÑ Air Fin Cooler°¡ 12mm¸¦ ÀÌ»óÀ¸·Î À̵¿ÇÏÁö ¸øÇϵµ·Ï, ¾Æ·¡¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ, GapÀ» 12mm·Î ÁÖ°í, Z-ÃàÀ» ±¸¼ÓÇØ ÁÖ¾î¾ß ÇÑ´Ù. ±×¸®°í ÀÀ·ÂÇؼ® °á°ú, 6mm ÀÌ»óÀÇ Movement°¡ ¹ß»ýÇÑ °æ¿ì¿¡´Â Iso Dwg¿¡ ÀÌ GapÀ» Ç¥½ÃÇÏ°í, Air Fin Cooler°¡ (¾çÂÊÀ¸·Î 6mm°¡ ¾Æ´Ñ) ÇÑÂÊÀ¸·Î¸¸ 12mm¸¦ À̵¿ÇÒ ¼ö ÀÖ°Ô ¼³Ä¡(½Ã°ø)µÇµµ·Ï ÀûÀýÇÑ ¼ö´ÜÀ» ÃëÇØ¾ß ÇÑ´Ù.

¾Æ·¡ÀÇ ±×¸²Àº Air Fin Cooler °ü·Ã ¹è°üÀÇ ÀÀ·ÂÇؼ®¿¡ ´ëÇÏ¿© º¸´Ù ½±°Ô ¼³¸íÇϱâ À§ÇÏ¿©, ³Ã°¢ÇؾßÇÒ À¯Ã¼°¡ ÇϳªÀÇ Piping Header·ÎºÎÅÍ 3°³ÀÇ Air Fin Cooler¿¡ À¯ÀԵǵµ·Ï ÀǵµÀûÀ¸·Î ±¸¼ºÇÑ, Iso Dwg°ú ÀÀ·ÂÇؼ®À» ¼³¸íÇϱâ À§ÇÑ DwgsÀÌ´Ù. Air Fin Cooler ¹è°ü SystemÀº ¾Æ·¡¿¡ º¸ÀÎ ¹Ù¿Í °°ÀÌ °¢°¢ ´Ù¸¥ 3°¡Áö Çؼ® ¹æ¹ýÀÌ »ç¿ëµÉ ¼ö ÀÖ´Ù.

Case-1:
ÀÌ´Â Air Fin CoolerÀÇ Tube HeaderÀÇ ÁßÁ¡À» °¢°¢ Z-Ãà¿¡ ´ëÇÏ¿© ±¸¼ÓÇÑ °æ¿ìÀÌ´Ù.

¸Ç ÁÂÃø Nozzle¿¡ ´ëÇÏ¿© ¹è°ü Header´Â ÁßÁ¡À¸·ÎºÎÅÍÀÇ °Å¸® LPH¿¡ ÀÇÇÏ¿© ¿­ÆØâÀ» ÇÏ°í, Air Fin CoolerÀÇ Header´Â °Å¸® LTH¿¡ ÀÇ°Å ¿­ÆØâÀ» ÇÑ´Ù. ±×·¯¹Ç·Î ¹è°üÀÇ Header°¡ Tube Headerº¸´Ù ´õ ¸¹Àº ¿­ÆØâÀ» ÇÏ°Ô µÈ´Ù. ÀÌ °æ¿ì¿¡´Â ¸Ç ¿ìÃø°ú ¸Ç ÁÂÃø Nozzle¿¡´Â ¿­ÆØâ¿¡ ÀÇÇÏ¿© ¸Å¿ì Å« Nozzle Load°¡ °¡ÇØÁø´Ù.

Case-2:
ÀÌ´Â 3°³ÀÇ Air Fin CoolerÀÇ Header¸¦ ¾î¶² Thrust BlockÀ¸·Î ¸ðµÎ ¿¬°áÇÏ°í Áß¾Ó Air Fin CoolerÀÇ ÁßÁ¡À» Z-Ãà¿¡ ´ëÇÏ¿© ±¸¼ÓÇÑ °æ¿ìÀÌ´Ù.

¸Ç ÁÂÃø Nozzle¿¡ ´ëÇÑ ¹è°ü HeaderÀÇ ¿­ÆØ⠰Ÿ®(LPH)¿Í Air Fin CoolerÀÇ ¿­ÆØ⠰Ÿ®(LTH)´Â °°´Ù. ±×·¯³ª ¹è°ü HeaderÀÇ ¿Âµµ¿¡ ºñÇÏ¿© Tube HeaderÀÇ ¿Âµµ´Â Á» ³·´Ù. µû¶ó¼­ ¿­ÆØâ ·®Àº ´Ù¸£´Ù. ±×·¯¹Ç·Î ÀÌ ¿­ÆØâ ·®ÀÇ Â÷ÀÌ¿¡ ÀÇÇÏ¿© ¸Ç ÁÂÃø°ú ¸Ç ¿ìÃø Nozzle¿¡´Â, Case-1¿¡ ºñÇÏ¿© ÀÛ±â´Â ÇÏÁö¸¸, »ó´çÇÑ Å©±âÀÇ Nozzle Load°¡ °¡ÇØÁø´Ù.

Case-3:
ÀÌ´Â API STD 661 Lateral Movement(6mm/12mm)ÀÇ ±ÔÁ¤¿¡ µû¶ó °¢°¢ÀÇ Air Fin Cooler°¡ Z-Ãà¿¡ ´ëÇÏ¿© ¿òÁ÷ÀÏ ¼ö ÀÖ°Ô ±¸¼ÓÇÏÁö ¾Ê´Â °æ¿ìÀÌ´Ù.
ÀÌ °æ¿ì¿¡´Â ¹è°ü HeaderÀÇ ¿­ÆØ⠰Ÿ®(LPH)¿Í Air Fin CoolerÀÇ ¿­ÆØ⠰Ÿ®(LTH)´Â Case-1ÀÇ °æ¿ì¿Í °°´Ù. ±×·¯³ª ¸Ç ¿ìÃøÀÇ Air Fin Cooler(001A)´Â ¿ìÃøÀ¸·Î ¸Ç ÁÂÃøÀÇ Air Fin Cooler(001C)´Â ÁÂÃøÀ¸·Î À̵¿ÇÏ°Ô µÊÀ¸·Î, »ç½Ç»ó Nozzle Load´Â ¿­ÆØâ ·®ÀÇ Â÷, Áï, °°Àº ¿­ÆØ⠰Ÿ® LTH¿¡ ´ëÇÏ¿© ¹è°ü HeaderÀÇ ¿Âµµ¿Í Tube HeaderÀÇ ¿Âµµ¿ÍÀÇ Â÷¿¡ ÀÇÇÏ¿© °áÁ¤µÇ´Â ¿­ÆØâ ·®ÀÇ Â÷ÀÌ¿¡ µû¶ó ÁÖ¾îÁø´Ù. µû¶ó¼­ ÀÌ °æ¿ì¿¡ Nozzle¿¡ °¡ÇØÁö´Â Nozzle Load´Â Á¦ÀÏ ÀÛÀº °ªÀÌ µÈ´Ù.

ÀÌ¿Í °°ÀÌ Air Fin CoolerÀÇ Tube Header¸¦ ModelingÇϸé Air Fin CoolerÀÇ Nozzle Load¸¦ API STD 661¿¡ ±ÔÁ¤ÇÑ Allowable °ª ÀÌÇÏ·Î ¸ÂÃß´Â µ¥ Å« ¾î·Á¿òÀÌ ¾øÀ» °ÍÀÔ´Ï´Ù. 2010.09.05. ¾ç±â¿Í



4. Allowable Stress Range

¿ì¸®°¡ Sustained Stress¶ó°í ÇÏ´Â °ÍÀº B31.1°ú B31.3¿¡¼­ Longitudinal Stresses·Î ºÒ¸°´Ù. Áï, Pressure Stress(=Hoop Stress), Weight Stress µî, Ç×½ÃÀûÀ¸·Î °¡ÇØÁö´Â Stress¸¦ ¸»ÇÏ´Â °ÍÀ¸·Î ±âÈ£´Â SL·Î ³ªÅ¸³½´Ù. ÀÌ Stress(SL)´Â ¿îÀü¸ðµå¿¡¼­ Mat'l Allowable Stress °ª(Sh)À» ÃÊ°úÇؼ­´Â ¾È µÈ´Ù.

ÇÑÆí, Thermal Stress´Â ¾Æ·¡ÀÇ °ø½ÄÀ¸·Î ÁÖ¾îÁø´Ù.

SE = (Sb2 + 4St2)1/2
¿©±â¿¡¼­
Sb = Resultant Bending Stress
St = Resultant Torsional Stress

ÀÌ Thermal Stress´Â ¾Æ·¡ÀÇ ¼ö½Ä 1a ¶Ç´Â 1b¿¡ ÀÇÇÑ °ª(SA)À» ÃÊ°úÇؼ­´Â ¾È µÇµµ·Ï ±ÔÁ¤ÇÏ°í ÀÖ´Ù.

SA = f(1.25Sc + 0.25Sh)   . . . 1a

ÀÌ ½Ä(1a)Àº SLÀÌ Sh¿Í °°Àº °æ¿ì, Áï, Sustained LoadÀÇ Stress °ªÀÌ Allowable °ªÀ» 100% ´Ù »ç¿ëÇÑ °æ¿ì¿¡ Àû¿ëµÇ¾î¾ß ÇÒ ±ØÇÑ »óÅ¿¡¼­ÀÇ Allowable Stress °ªÀ» º¸ÀÌ°í ÀÖ´Ù. ±×·¯³ª º¸Åë Sustained Stress °ª(SL)Àº Äڵ忡¼­ ÁÖ¾îÁø Allowable Stress °ª(Sh)ÀÇ 60% ÀÌÇÏ°¡ µÇµµ·Ï ÇÏ´Â °ÍÀÌ ÀÀ·ÂÇؼ®ÀÇ PracticeÀÌ´Ù. ±×·¯¹Ç·Î Çö½ÇÀûÀ¸·Î Thermal StressÀÇ Allowable °ªÀº ¾Æ·¡¿¡ º¸ÀÎ ¼ö½Ä '1b'ÀÇ °ªÀÌ Àû¿ëµÈ´Ù.

B31.1°ú B31.3¿¡¼­´Â ÁÖ¾îÁø Allowable °ª(Sh)°ú Sustained Load¿¡ ÀÇÇÑ Stress °ª(SL)°úÀÇ Â÷¸¦ À§ ¼ö½Ä '1a'¿¡ ÀÇÇÑ °ª(SA)¿¡ ´õÇϵµ·Ï ±ÔÁ¤ÇÏ°í ÀÖ´Ù. µû¶ó¼­ Çö½ÇÀûÀÎ Allowable Stress Range´Â

SA = f(1.25Sc + 0.25Sh) + f(Sh - SL)
   = f(1.25Sc + 1.25Sh) - fSL
   = f[1.25(Sc + Sh) - SL]   . . . 1b

ÀÌ¿Í °°ÀÌ µÈ´Ù. ÀÌ´Â Sustained Load °ªÀÌ ÀÛ¾ÆÁö¸é Thermal Allowable Load °ªÀÌ ´õ Ä¿ÁüÀ» ¶æÇÑ´Ù. ±×·¯³ª ¾î¶² ȸ»ç¿¡¼­´Â Thermal Allowable Load °ªÀ¸·Î, Sustained Load¿¡ µû¶ó °¡º¯ÀûÀ¸·Î º¯ÇÏ´Â ¼ö½Ä '1b'¸¦ »ç¿ëÇÏÁö ¾Ê°í, Ç×»ó ÀÏÁ¤ÇÏ°Ô ÁÖ¾îÁö´Â ¼ö½Ä '1a'¸¦ °íÁýÇÏ´Â °æ¿ìµµ ÀÖ´Ù.

Libral Stress Allowable [for this job] [v]

CAESAR-II¿¡¼­ Thermal Allowable Load °ªÀ¸·Î À§ÀÇ ½Ä '1b'¸¦ »ç¿ëÇÏ°í ½ÍÀ¸¸é À§¿¡ º¸ÀÎ ¿É¼Ç Ç׸ñÀ» üũÇì ÁÖ¾î¾ß ÇÑ´Ù. À§ÀÇ ¿É¼Ç Ç׸ñÀº CAESAR-II Input Menu 'Environment' > 'Special Excution Parameters'¿¡¼­ (Seismic) Uniform Load¸¦ G's Factor·Î ¼³Á¤ÇÏ´Â ¿É¼Ç LineÀÇ ¹Ù·Î À§¿¡ À§Ä¡ÇÑ´Ù.



5. ¿ÍÀÌÁø¿£Áö´Ï¾î½ºÀÇ Utility Program Download            

¾Æ·¡ÀÇ S/WµéÀº Setup.exe·Î ¼³Ä¡ÇÏÁö ¾Ê°í DownloadÇÏ¿© ¹Ù·Î »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Á¦ÀÛµÈ °ÍµéÀÔ´Ï´Ù. »ç¿ëÇϴ٠Ȥ ¹ö±×°¡ ¹ß°ßµÇ¸é ¸ÞÀÏ ÁÖ¼¼¿ä. ¹Ù·Î °íÄ¡°Ú½À´Ï´Ù. ¾ÐÃà(zip) ÆÄÀÏ·Î µÇ¾î ÀÖÀ¸´Ï Download ÈÄ ¾ÐÃàÀ» Ç®¾î »ç¿ëÇϼ¼¿ä. ´Ù¿îÇÑ ÆÄÀÏÀÌ ½ÇÇàµÇÁö ¾ÊÀ¸¸é, ¸¶¿ì½º Ä¿Á®(¼Õ¸ð¾ç)¸¦ ¿Ã·Á³õ°í ¸¶¿ì½º ¿À¸¥ÂÊ ¹öÆ°À» Ŭ¸¯ÇÑ ÈÄ À̾ ³ªÅ¸³ª´Â Æ˾÷ ¸Þ´º¿¡¼­ "´Ù¸¥ À̸§À¸·Î ´ë»ó ÀúÀå(A)..."À» ¼±ÅÃÇÏ¿© Download ÇϽʽÿÀ.

1. Global Forces/Moments¸¦ Local ÁÂÇ¥ Forces/Moments·Î º¯È¯ÇÏ´Â LoadsTrans.exe

LoadsTrans.exe Download

2. API-610 Pump Nozzle Load¸¦ Allowable Load¿Í ºñ±³ üũÇÏ´Â API-610_NozzChk.exe

API-610_NozzChk.exe Download

3. Á¤ÇØÁø °¢µµÀ¸·Î Á¦À۵Ǿî¾ß ÇÒ Trim ElbowÀÇ ±â¿ï¾îÁø °¢À» °è»êÇÏ´Â ElbAngCalc.exe
    (ÀÌ´Â ¹è°ü ÀÀ·ÂÇؼ®°ú´Â °ü·ÃÀÌ ¾ø´Â ¹è°ü µðÀÚÀο¡ °üÇÑ S/WÀÔ´Ï´Ù)

ElbAngCalc.exe Download



4. LineÀÇ À¯¿¬¼ºÀ» üũÇÏ´Â ¿¢¼¿ ÆÄÀÏ PipingFlexChk.xls
µðÀÚÀ̳ʰ¡ Vessel, Heat Exchanger, Pump µîÀÇ ³ëÁñ¿¡ ¿¬°áµÇ´Â LineÀ» LayoutÀ» ÇÒ ¶§ LineÀÇ Flexibility¸¦ ÀûÀýÇÏ°Ô ÁÖ±â À§ÇÏ¿© Á» °í½ÉÇÏ°Ô µË´Ï´Ù. LineÀÇ Flexibility°¡ ÀÛÀ¸¸é ÀÀ·ÂÇؼ®¿¡¼­ ÁöÀûÀ» ¹Þ¾Æ °á±¹ LineÀ» ´Ù½Ã µðÀÚÀÎ ÇÏ°Ô µË´Ï´Ù. ¾Æ·¡ ¿¢¼¿ ÆÄÀÏÀº ´©±¸¶óµµ ¹è°üÀÇ À¯¿¬¼ºÀ» ½±°Ô üũÇØ º¼ ¼ö ÀÖµµ·Ï Çϱâ À§ÇÏ¿© ¸¸µé¾îÁø °ÍÀÔ´Ï´Ù.

Excel File¿¡¼­´Â Visual BASICÀÌ Áö¿øµË´Ï´Ù. À§ÀÇ ¹è°ü À¯¿¬¼º üũ S/W´Â ¿¢¼¿ Visual BASICÀ¸·Î ¸¸µé¾ú½À´Ï´Ù. Visual BASICÀ» »ç¿ëÇÏ¸é ¿¢¼¿ÀÇ ÇÔ¼ö¸¦ »ç¿ëÇÏ´Â °Íº¸´Ù ÈξÀ ´õ Æí¸®ÇÏ°Ô ¿©·¯ºÐµéÀÇ ÀÛ¾÷À» ½Å¼ÓÇÏ°Ô Ã³¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©ºÐµéÀÌ Excel BASICÀ» ¹è¿ì´Â µ¥ µµ¿òÀÌ µÇµµ·Ï ¾ÏÈ£¸¦ °ÉÁö ¾Ê°í ¿­¾îµÎ¾ú½À´Ï´Ù. ÀÌ ÇÁ·Î±×·¥À¸·Î ¿©·¯ºÐµéÀÇ Excel BASICÀÇ ½Ç·ÂÀÌ Çâ»óµÇ±â¸¦ ¹Ù¶ø´Ï´Ù.

´Ù¿îÇÑ ÈÄ ½ÇÇàÇϸé ÀϺΠ¼¿¿¡ '#####'ÀÌ Ç¥½ÃµÉ ¼öµµ ÀÖ½À´Ï´Ù. ÀÌ´Â »ç¿ëÇÏ´Â ¿¢¼¿¿¡ ¸ÅÅ©·Î°¡ ½ÇÇàµÇÁö ¾Êµµ·Ï ¼³Á¤µÇ¾î Àֱ⠶§¹®ÀÔ´Ï´Ù. º¸¾È¼¾ÅÍ¿¡¼­ '¸ÅÅ©·Î ¼³Á¤' ÅÇÀ» ¼±ÅÃÇÑ ÈÄ, ¸Ç¾Æ·¡¿¡ ÀÖ´Â '¸ðµç ¸ÅÅ©·Î Æ÷ÇÔ(À§Ç輺...' Ç׸ñÀ» ¼±Åà ÇÏ°í À̾, ¹Ù·Î ¾Æ·¡¿¡ ÀÖ´Â '[v] VBA ÇÁ·ÎÁ§Æ®...'¿¡ üũÇÏ¿© À̸¦ È°¼ºÈ­ ÇؾßÇÕ´Ï´Ù. ´ÙÀ½¿¡ ¿¢¼¿À» ¿ÏÀüÈ÷ ´Ý°í ´Ù½Ã ¿­¸é ¸ðµç ¸¶Å©·Î ÇÁ·Î±×·¥ÀÌ Á¤»óÀûÀ¸·Î ½ÇÇàµË´Ï´Ù.


PipingFlexChk.xls Download


5. FlangeÀÇ Leakage »óŸ¦ AnalysisÇÏ´Â Excel File FlgLeakageAnal.xls
ÀÌ FlangeÀÇ Leakage Analysis ¿¢¼¿ ÆÄÀÏÀº CARSAR-II Ver.4.5 ÀÌÇÏÀÇ °ÍÀ» »ç¿ëÇÒ ¶§ À¯¿ëÇÕ´Ï´Ù. Áö±ÝÀº º¸Åë Ver.5.2 ÀÌ»óÀÇ S/W¸¦ »ç¿ëÇϹǷΠÀÔ·Â ½ÃÆ®¿¡¼­ 'Flange Checks' ¿É¼Ç Ç׸ñÀ» üũÇÏ¿© À̸¦ È°¼ºÈ­ Çϸé ÀÚµ¿À¸·Î FlangeÀÇ Leakage »óÅ°¡ üũµË´Ï´Ù.

FlgLeakageAnal.xls Download

À§ÀÇ ÇÁ·Î±×·¥µéÀº ¸ðµÎ »ç¿ë¹æ¹ýÀÌ °£´ÜÇÏ¿© º°µµÀÇ ¸Þ´º¾óÀÌ Á¦°øµÇÁö ¾Ê¾Ò½À´Ï´Ù.
À¯¿ëÇÏ°Ô Àß »ç¿ëÇϽñæ... 2013.12.12 ¾ç±â¿Í